Statistical tests in gaze
Source:vignettes/Statiastical_test_in_gaze.Rmd
Statiastical_test_in_gaze.Rmd
Loading package
library(autoReg)
library(dplyr) # for use of pipe operator `%>%`
: 'dplyr'
Attaching package'package:stats':
The following objects are masked from
filter, lag'package:base':
The following objects are masked from
intersect, setdiff, setequal, union
Statistical tests for numeric variables
The gaze() function in this autoReg package perform statistical tests for compare means between/among groups. The acs data included in moonBook package is a dataset containing demographic and laboratory data of 857 patients with acute coronary syndrome(ACS).
To make a table comparing baseline characteristics, use gaze() function.
data(acs, package="moonBook")
gaze(sex~.,data=acs)
————————————————————————————————————————————————————————————————————————:sex levels Female Male p
DependentN=287) (N=570)
(N) (
————————————————————————————————————————————————————————————————————————68.7 ± 10.7 60.6 ± 11.2 <.001
age Mean ± SD 275 (95.8%) 530 (93%) .136
cardiogenicShock No 12 (4.2%) 40 (7%)
Yes 119 (41.5%) 193 (33.9%) .035
entry Femoral 168 (58.5%) 377 (66.1%)
Radial 50 (17.4%) 103 (18.1%) .012
Dx NSTEMI 84 (29.3%) 220 (38.6%)
STEMI 153 (53.3%) 247 (43.3%)
Unstable Angina 56.3 ± 10.1 55.6 ± 9.4 .387
EF Mean ± SD 153.8 ± 6.2 167.9 ± 6.1 <.001
height Mean ± SD 57.2 ± 9.3 68.7 ± 10.3 <.001
weight Mean ± SD 24.2 ± 3.6 24.3 ± 3.2 .611
BMI Mean ± SD 194 (67.6%) 373 (65.4%) .580
obesity No 93 (32.4%) 197 (34.6%)
Yes 188.9 ± 51.1 183.3 ± 45.9 .124
TC Mean ± SD 117.8 ± 41.2 116.0 ± 41.1 .561
LDLC Mean ± SD 39.0 ± 11.5 37.8 ± 10.9 .145
HDLC Mean ± SD 119.9 ± 76.2 127.9 ± 97.3 .195
TG Mean ± SD 173 (60.3%) 380 (66.7%) .077
DM No 114 (39.7%) 190 (33.3%)
Yes 83 (28.9%) 273 (47.9%) <.001
HBP No 204 (71.1%) 297 (52.1%)
Yes -smoker 49 (17.1%) 155 (27.2%) <.001
smoking Ex209 (72.8%) 123 (21.6%)
Never 29 (10.1%) 292 (51.2%)
Smoker ————————————————————————————————————————————————————————————————————————
You can make a publication-ready table with myft() function which can be used in HTML, pdf, microsoft word and powerpoint file.
name |
levels |
Female (N=287) |
Male (N=570) |
p |
---|---|---|---|---|
age |
Mean ± SD |
68.7 ± 10.7 |
60.6 ± 11.2 |
<.001 |
cardiogenicShock |
No |
275 (95.8%) |
530 (93%) |
.136 |
Yes |
12 (4.2%) |
40 (7%) |
||
entry |
Femoral |
119 (41.5%) |
193 (33.9%) |
.035 |
Radial |
168 (58.5%) |
377 (66.1%) |
||
Dx |
NSTEMI |
50 (17.4%) |
103 (18.1%) |
.012 |
STEMI |
84 (29.3%) |
220 (38.6%) |
||
Unstable Angina |
153 (53.3%) |
247 (43.3%) |
||
EF |
Mean ± SD |
56.3 ± 10.1 |
55.6 ± 9.4 |
.387 |
height |
Mean ± SD |
153.8 ± 6.2 |
167.9 ± 6.1 |
<.001 |
weight |
Mean ± SD |
57.2 ± 9.3 |
68.7 ± 10.3 |
<.001 |
BMI |
Mean ± SD |
24.2 ± 3.6 |
24.3 ± 3.2 |
.611 |
obesity |
No |
194 (67.6%) |
373 (65.4%) |
.580 |
Yes |
93 (32.4%) |
197 (34.6%) |
||
TC |
Mean ± SD |
188.9 ± 51.1 |
183.3 ± 45.9 |
.124 |
LDLC |
Mean ± SD |
117.8 ± 41.2 |
116.0 ± 41.1 |
.561 |
HDLC |
Mean ± SD |
39.0 ± 11.5 |
37.8 ± 10.9 |
.145 |
TG |
Mean ± SD |
119.9 ± 76.2 |
127.9 ± 97.3 |
.195 |
DM |
No |
173 (60.3%) |
380 (66.7%) |
.077 |
Yes |
114 (39.7%) |
190 (33.3%) |
||
HBP |
No |
83 (28.9%) |
273 (47.9%) |
<.001 |
Yes |
204 (71.1%) |
297 (52.1%) |
||
smoking |
Ex-smoker |
49 (17.1%) |
155 (27.2%) |
<.001 |
Never |
209 (72.8%) |
123 (21.6%) |
||
Smoker |
29 (10.1%) |
292 (51.2%) |
You can select the statistical method comparing means between/among groups with argument method. Possible values in methods are:
- 1 forces analysis as normal-distributed
- 2 forces analysis as continuous non-normal
- 3 performs a Shapiro-Wilk test or nortest::ad.test to decide between normal or non-normal
Default value is 1.
1. Comparison of two groups
Ejection fraction(EF) refers to how well your left ventricle (or right ventricle) pumps blood with each heart beat. The normal values are approximately 56-78%.
(1) Parametric method
gaze(sex~EF,data=acs) # default: method=1
——————————————————————————————————————————————————————————————:sex levels Female Male p
DependentN=287) (N=570)
(N) (
——————————————————————————————————————————————————————————————56.3 ± 10.1 55.6 ± 9.4 .387
EF Mean ± SD ——————————————————————————————————————————————————————————————
If you want to compare EF means between males and females in acs data with parametric method, you have to compare the variances of two samples. If the variances of two groups are equal, the pooled variance is used to estimate the variance. Otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.
var.test(EF~sex,data=acs) # F Test to Compare Two Variances
F test to compare two variances
: EF by sex
data= 1.144, num df = 239, denom df = 482, p-value = 0.2214
F : true ratio of variances is not equal to 1
alternative hypothesis95 percent confidence interval:
0.9221264 1.4309581
:
sample estimates
ratio of variances 1.143983
The result of var.test is not significant. So we cannot reject the null hypothesis :\(H_0 : true\ ratio\ of\ variance\ is\ equal\ to\ 0\). With this result, we perform t-test using pooled variance.
t.test(EF~sex,data=acs,var.equal=TRUE)
-test
Two Sample t
: EF by sex
data= 0.86514, df = 721, p-value = 0.3872
t : true difference in means between group Female and group Male is not equal to 0
alternative hypothesis95 percent confidence interval:
-0.8346856 2.1498875
:
sample estimatesin group Female mean in group Male
mean 56.27375 55.61615
The result of t.test is not significant(\(p=.387\)). The p value in the table is the result of this test. Alternatively, if the result of var.test() is significant, we perform t.test with the Welch approximation to the degrees of freedom.
t.test(EF~sex,data=acs) # default value: var.equal=FALSE
-test
Welch Two Sample t
: EF by sex
data= 0.8458, df = 449.65, p-value = 0.3981
t : true difference in means between group Female and group Male is not equal to 0
alternative hypothesis95 percent confidence interval:
-0.8703566 2.1855585
:
sample estimatesin group Female mean in group Male
mean 56.27375 55.61615
(2) Non-parametric method
gaze(sex~EF,data=acs, method=2) # method=2 forces analysis as continuous non-normal
—————————————————————————————————————————————————————————————————————————————:sex levels Female Male p
DependentN=287) (N=570)
(N) (
—————————————————————————————————————————————————————————————————————————————Median (IQR) 59.2 (51.4 to 63.1) 57.3 (50.0 to 61.8) .053
EF —————————————————————————————————————————————————————————————————————————————
When you choose method=2, the Wilcoxon rank sum test(also known as Mann-Whitney test) is performed.
wilcox.test(EF~sex,data=acs)
Wilcoxon rank sum test with continuity correction
: EF by sex
data= 63078, p-value = 0.05295
W : true location shift is not equal to 0 alternative hypothesis
(3) Performs test for normality
gaze(sex~EF,data=acs, method=3)
—————————————————————————————————————————————————————————————————————————————:sex levels Female Male p
DependentN=287) (N=570)
(N) (
—————————————————————————————————————————————————————————————————————————————Median (IQR) 59.2 (51.4 to 63.1) 57.3 (50.0 to 61.8) .053
EF —————————————————————————————————————————————————————————————————————————————
When method=3, perform the Shapiro-Wilk test or the Anderson-Daring test for normality(nortest::ad.test) to decide between normal or non-normal. If the number of cases are below 5000, Shapiro-Wilk test performed. If above 5000, Anderson-Daring test for normality performed.
nrow(acs)
1] 857
[=lm(age~sex,data=acs)
outshapiro.test(resid(out))
-Wilk normality test
Shapiro
: resid(out)
data= 0.99343, p-value = 0.000808 W
The result of shapiro.test() is significant. So we perform Wilcoxon rank sum test.
2. Comparison of three or more groups
The ‘Dx’ column of acs data is diagnosis. It has three groups : Unstable Angina, NSTEMI and STEMI. You can make a table summarizing baseline characteristics among three groups. The parametric method comparing means of three or more groups is ANOVA, whereas non-parametric method is Kruskal-Wallis rank sum test.
name |
levels |
NSTEMI (N=153) |
STEMI (N=304) |
Unstable Angina (N=400) |
p |
---|---|---|---|---|---|
age |
Mean ± SD |
64.3 ± 12.3 |
62.1 ± 12.1 |
63.8 ± 11.0 |
.073 |
sex |
Female |
50 (32.7%) |
84 (27.6%) |
153 (38.2%) |
.012 |
Male |
103 (67.3%) |
220 (72.4%) |
247 (61.8%) |
||
cardiogenicShock |
No |
149 (97.4%) |
256 (84.2%) |
400 (100%) |
<.001 |
Yes |
4 (2.6%) |
48 (15.8%) |
0 (0%) |
||
entry |
Femoral |
58 (37.9%) |
133 (43.8%) |
121 (30.2%) |
.001 |
Radial |
95 (62.1%) |
171 (56.2%) |
279 (69.8%) |
||
EF |
Mean ± SD |
55.0 ± 9.3 |
52.4 ± 9.5 |
59.2 ± 8.7 |
<.001 |
height |
Mean ± SD |
163.3 ± 8.2 |
165.1 ± 8.2 |
161.7 ± 9.7 |
<.001 |
weight |
Mean ± SD |
64.3 ± 10.2 |
65.7 ± 11.6 |
64.5 ± 11.6 |
.361 |
BMI |
Mean ± SD |
24.1 ± 3.2 |
24.0 ± 3.3 |
24.6 ± 3.4 |
.064 |
obesity |
No |
106 (69.3%) |
209 (68.8%) |
252 (63%) |
.186 |
Yes |
47 (30.7%) |
95 (31.2%) |
148 (37%) |
||
TC |
Mean ± SD |
193.7 ± 53.6 |
183.2 ± 43.4 |
183.5 ± 48.3 |
.057 |
LDLC |
Mean ± SD |
126.1 ± 44.7 |
116.7 ± 39.5 |
112.9 ± 40.4 |
.004 |
HDLC |
Mean ± SD |
38.9 ± 11.9 |
38.5 ± 11.0 |
37.8 ± 10.9 |
.501 |
TG |
Mean ± SD |
130.1 ± 88.5 |
106.5 ± 72.0 |
137.4 ± 101.6 |
<.001 |
DM |
No |
96 (62.7%) |
208 (68.4%) |
249 (62.2%) |
.209 |
Yes |
57 (37.3%) |
96 (31.6%) |
151 (37.8%) |
||
HBP |
No |
62 (40.5%) |
150 (49.3%) |
144 (36%) |
.002 |
Yes |
91 (59.5%) |
154 (50.7%) |
256 (64%) |
||
smoking |
Ex-smoker |
42 (27.5%) |
66 (21.7%) |
96 (24%) |
<.001 |
Never |
50 (32.7%) |
97 (31.9%) |
185 (46.2%) |
||
Smoker |
61 (39.9%) |
141 (46.4%) |
119 (29.8%) |
(1) Parametric method
Now we focus on comparing means of age among three groups.
gaze(Dx~age,data=acs) # default : method=1
———————————————————————————————————————————————————————————————————————————————————————:Dx levels NSTEMI STEMI Unstable Angina p
DependentN=153) (N=304) (N=400)
(N) (
———————————————————————————————————————————————————————————————————————————————————————64.3 ± 12.3 62.1 ± 12.1 63.8 ± 11.0 .073
age Mean ± SD ———————————————————————————————————————————————————————————————————————————————————————
We can perform ANOVA as follows
=lm(age~Dx,data=acs)
outanova(out)
Analysis of Variance Table
: age
ResponsePr(>F)
Df Sum Sq Mean Sq F value 2 715 357.62 2.624 0.07309 .
Dx 854 116389 136.29
Residuals ---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes
On analysis of variance table you can get the p value 0.073.
(2) Non-parametric method
name |
levels |
NSTEMI (N=153) |
STEMI (N=304) |
Unstable Angina (N=400) |
p |
---|---|---|---|---|---|
age |
Median (IQR) |
65.0 (55.0 to 75.0) |
62.0 (53.0 to 71.0) |
65.0 (56.0 to 72.0) |
.109 |
The above p value in the table is the result of Kruskal-Wallis rank sum test.
kruskal.test(age~Dx,data=acs)
-Wallis rank sum test
Kruskal
: age by Dx
data-Wallis chi-squared = 4.424, df = 2, p-value = 0.1095 Kruskal
if(sum(result)<=5000) out4=shapiro.test(resid(out3))
else out4=nortest::ad.test(resid(out3))
out5=kruskal.test(as.numeric(x),factor(y))
p=c(out4$p.value,anova(out3)$Pr[1],out5$p.value)
(3) Performs test for normality
name |
levels |
NSTEMI (N=153) |
STEMI (N=304) |
Unstable Angina (N=400) |
p |
---|---|---|---|---|---|
age |
Median (IQR) |
65.0 (55.0 to 75.0) |
62.0 (53.0 to 71.0) |
65.0 (56.0 to 72.0) |
.109 |
When method=3, gaze() performs normality test.
=lm(age~Dx,data=acs)
outshapiro.test(resid(out))
-Wilk normality test
Shapiro
: resid(out)
data= 0.99102, p-value = 4.413e-05 W
Since the result for normality test is significant(\(p<0.001\)), then we perform Kruskal-Wallis test.
Statistical tests for categorical variables
The statistical methods for categorical variables in gaze() are as follows:
0 : Perform chi-squared test first. If warning present, perform Fisher’s exact test
1 : Perform chi-squared test without continuity correction
2 : Perform chi-squared test with continuity correction (default value)
3 : perform Fisher’s exact test
4 : perform test for trend in proportions
You can choose by setting catMethod argument(default value is 2).
(1) Default method : chi-squared test with continuity correction
The default method for categorical variables is chi-squared test with Yates’s correction for continuity(https://en.wikipedia.org/wiki/Yates%27s_correction_for_continuity).
gaze(sex~Dx,data=acs) # default : catMethod=2
————————————————————————————————————————————————————————————————————:sex levels Female Male p
DependentN=287) (N=570)
(N) (
————————————————————————————————————————————————————————————————————50 (17.4%) 103 (18.1%) .012
Dx NSTEMI 84 (29.3%) 220 (38.6%)
STEMI 153 (53.3%) 247 (43.3%)
Unstable Angina ————————————————————————————————————————————————————————————————————
You can get same result with the following R code:
=table(acs$Dx,acs$sex)
resultchisq.test(result) # default: correct = TRUE
's Chi-squared test
Pearson
data: result
X-squared = 8.7983, df = 2, p-value = 0.01229
(2) Chi-squared test without continuity correction
If you want to perform chi-squared test without continuity correction, just set catMethod=1. This is the default method in SPSS.
gaze(sex~Dx,data=acs, catMethod=1) # Perform chisq.test without continuity correction
————————————————————————————————————————————————————————————————————:sex levels Female Male p
DependentN=287) (N=570)
(N) (
————————————————————————————————————————————————————————————————————50 (17.4%) 103 (18.1%) .012
Dx NSTEMI 84 (29.3%) 220 (38.6%)
STEMI 153 (53.3%) 247 (43.3%)
Unstable Angina ————————————————————————————————————————————————————————————————————
You can get same result with the following R code:
=table(acs$Dx,acs$sex)
resultchisq.test(result, correct=FALSE) # without continuity correction
's Chi-squared test
Pearson
data: result
X-squared = 8.7983, df = 2, p-value = 0.01229
(3) Fisher’s exact test
If you want to perform Fisher’s exact test, set the catMethod=3.
gaze(sex~Dx,data=acs, catMethod=3) # Perform Fisher's exact test
————————————————————————————————————————————————————————————————————:sex levels Female Male p
DependentN=287) (N=570)
(N) (
————————————————————————————————————————————————————————————————————50 (17.4%) 103 (18.1%) .012
Dx NSTEMI 84 (29.3%) 220 (38.6%)
STEMI 153 (53.3%) 247 (43.3%)
Unstable Angina ————————————————————————————————————————————————————————————————————
You can get same result with the following R code:
=table(acs$Dx,acs$sex)
resultfisher.test(result)
's Exact Test for Count Data
Fisher
data: result
p-value = 0.01191
alternative hypothesis: two.sided
(4) Test for trend in proportions
If you want to perform test for trend in proportions, set the catMethod=4. You can perform this test only when the grouping variable has only two group(male and female for example).
gaze(sex~Dx,data=acs, catMethod=4) # Perform test for trend in proportions
————————————————————————————————————————————————————————————————————:sex levels Female Male p
DependentN=287) (N=570)
(N) (
————————————————————————————————————————————————————————————————————50 (17.4%) 103 (18.1%) .050
Dx NSTEMI 84 (29.3%) 220 (38.6%)
STEMI 153 (53.3%) 247 (43.3%)
Unstable Angina ————————————————————————————————————————————————————————————————————
You can get same result with the following R code:
=table(acs$Dx,acs$sex)
result
result
Female Male50 103
NSTEMI 84 220
STEMI 153 247
Unstable Angina prop.trend.test(result[,2],rowSums(result))
-squared Test for Trend in Proportions
Chi
: result[, 2] out of rowSums(result) ,
data: 1 2 3
using scores-squared = 3.8332, df = 1, p-value = 0.05025 X
Make a combining table with two or more grouping variables
You can make a combining table with two or more grouping variables.
sex (N) |
Female (N=287) |
Male (N=570) |
|||||||
---|---|---|---|---|---|---|---|---|---|
name |
levels |
NSTEMI (N=50) |
STEMI (N=84) |
Unstable Angina (N=153) |
p |
NSTEMI (N=103) |
STEMI (N=220) |
Unstable Angina (N=247) |
p |
age |
Mean ± SD |
70.9 ± 11.4 |
69.1 ± 10.4 |
67.7 ± 10.7 |
.177 |
61.1 ± 11.6 |
59.4 ± 11.7 |
61.4 ± 10.6 |
.133 |
cardiogenicShock |
No |
49 (98%) |
73 (86.9%) |
153 (100%) |
<.001 |
100 (97.1%) |
183 (83.2%) |
247 (100%) |
<.001 |
Yes |
1 (2%) |
11 (13.1%) |
0 (0%) |
3 (2.9%) |
37 (16.8%) |
0 (0%) |
|||
entry |
Femoral |
22 (44%) |
45 (53.6%) |
52 (34%) |
.013 |
36 (35%) |
88 (40%) |
69 (27.9%) |
.022 |
Radial |
28 (56%) |
39 (46.4%) |
101 (66%) |
67 (65%) |
132 (60%) |
178 (72.1%) |
|||
EF |
Mean ± SD |
54.8 ± 9.1 |
52.3 ± 10.9 |
59.4 ± 8.8 |
<.001 |
55.1 ± 9.4 |
52.4 ± 8.9 |
59.1 ± 8.7 |
<.001 |
height |
Mean ± SD |
154.2 ± 5.1 |
155.7 ± 5.4 |
152.6 ± 6.7 |
.002 |
167.5 ± 5.7 |
168.7 ± 6.0 |
167.3 ± 6.4 |
.055 |
weight |
Mean ± SD |
57.2 ± 10.3 |
57.4 ± 9.0 |
57.1 ± 9.1 |
.978 |
67.5 ± 8.4 |
68.8 ± 10.9 |
69.0 ± 10.6 |
.479 |
BMI |
Mean ± SD |
24.1 ± 4.3 |
23.6 ± 3.2 |
24.5 ± 3.5 |
.215 |
24.1 ± 2.6 |
24.1 ± 3.4 |
24.6 ± 3.4 |
.205 |
obesity |
No |
35 (70%) |
60 (71.4%) |
99 (64.7%) |
.528 |
71 (68.9%) |
149 (67.7%) |
153 (61.9%) |
.301 |
Yes |
15 (30%) |
24 (28.6%) |
54 (35.3%) |
32 (31.1%) |
71 (32.3%) |
94 (38.1%) |
|||
TC |
Mean ± SD |
196.3 ± 52.7 |
180.7 ± 45.7 |
191.1 ± 53.1 |
.192 |
192.6 ± 54.3 |
184.1 ± 42.6 |
178.7 ± 44.6 |
.036 |
LDLC |
Mean ± SD |
127.7 ± 39.5 |
111.0 ± 40.0 |
118.3 ± 41.8 |
.088 |
125.4 ± 47.1 |
118.9 ± 39.1 |
109.5 ± 39.2 |
.002 |
HDLC |
Mean ± SD |
40.1 ± 13.8 |
39.5 ± 11.2 |
38.5 ± 10.8 |
.627 |
38.4 ± 10.9 |
38.1 ± 10.9 |
37.4 ± 10.9 |
.655 |
TG |
Mean ± SD |
112.5 ± 51.1 |
112.3 ± 87.2 |
126.3 ± 76.0 |
.316 |
138.0 ± 100.2 |
104.3 ± 65.5 |
144.3 ± 114.2 |
<.001 |
DM |
No |
25 (50%) |
54 (64.3%) |
94 (61.4%) |
.240 |
71 (68.9%) |
154 (70%) |
155 (62.8%) |
.219 |
Yes |
25 (50%) |
30 (35.7%) |
59 (38.6%) |
32 (31.1%) |
66 (30%) |
92 (37.2%) |
|||
HBP |
No |
19 (38%) |
28 (33.3%) |
36 (23.5%) |
.084 |
43 (41.7%) |
122 (55.5%) |
108 (43.7%) |
.016 |
Yes |
31 (62%) |
56 (66.7%) |
117 (76.5%) |
60 (58.3%) |
98 (44.5%) |
139 (56.3%) |
|||
smoking |
Ex-smoker |
8 (16%) |
13 (15.5%) |
28 (18.3%) |
.184 |
34 (33%) |
53 (24.1%) |
68 (27.5%) |
.002 |
Never |
37 (74%) |
57 (67.9%) |
115 (75.2%) |
13 (12.6%) |
40 (18.2%) |
70 (28.3%) |
|||
Smoker |
5 (10%) |
14 (16.7%) |
10 (6.5%) |
56 (54.4%) |
127 (57.7%) |
109 (44.1%) |
You can select whether or not show total column.
sex (N) |
Female (N=287) |
Male (N=570) |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
name |
levels |
NSTEMI (N=50) |
STEMI (N=84) |
Unstable Angina (N=153) |
total (N=287) |
p |
NSTEMI (N=103) |
STEMI (N=220) |
Unstable Angina (N=247) |
total (N=570) |
p |
age |
Mean ± SD |
70.9 ± 11.4 |
69.1 ± 10.4 |
67.7 ± 10.7 |
68.7 ± 10.7 |
.177 |
61.1 ± 11.6 |
59.4 ± 11.7 |
61.4 ± 10.6 |
60.6 ± 11.2 |
.133 |
cardiogenicShock |
No |
49 (98%) |
73 (86.9%) |
153 (100%) |
275 (95.8%) |
<.001 |
100 (97.1%) |
183 (83.2%) |
247 (100%) |
530 (93%) |
<.001 |
Yes |
1 (2%) |
11 (13.1%) |
0 (0%) |
12 (4.2%) |
3 (2.9%) |
37 (16.8%) |
0 (0%) |
40 (7%) |
|||
entry |
Femoral |
22 (44%) |
45 (53.6%) |
52 (34%) |
119 (41.5%) |
.013 |
36 (35%) |
88 (40%) |
69 (27.9%) |
193 (33.9%) |
.022 |
Radial |
28 (56%) |
39 (46.4%) |
101 (66%) |
168 (58.5%) |
67 (65%) |
132 (60%) |
178 (72.1%) |
377 (66.1%) |
|||
EF |
Mean ± SD |
54.8 ± 9.1 |
52.3 ± 10.9 |
59.4 ± 8.8 |
56.3 ± 10.1 |
<.001 |
55.1 ± 9.4 |
52.4 ± 8.9 |
59.1 ± 8.7 |
55.6 ± 9.4 |
<.001 |
height |
Mean ± SD |
154.2 ± 5.1 |
155.7 ± 5.4 |
152.6 ± 6.7 |
153.8 ± 6.2 |
.002 |
167.5 ± 5.7 |
168.7 ± 6.0 |
167.3 ± 6.4 |
167.9 ± 6.1 |
.055 |
weight |
Mean ± SD |
57.2 ± 10.3 |
57.4 ± 9.0 |
57.1 ± 9.1 |
57.2 ± 9.3 |
.978 |
67.5 ± 8.4 |
68.8 ± 10.9 |
69.0 ± 10.6 |
68.7 ± 10.3 |
.479 |
BMI |
Mean ± SD |
24.1 ± 4.3 |
23.6 ± 3.2 |
24.5 ± 3.5 |
24.2 ± 3.6 |
.215 |
24.1 ± 2.6 |
24.1 ± 3.4 |
24.6 ± 3.4 |
24.3 ± 3.2 |
.205 |
obesity |
No |
35 (70%) |
60 (71.4%) |
99 (64.7%) |
194 (67.6%) |
.528 |
71 (68.9%) |
149 (67.7%) |
153 (61.9%) |
373 (65.4%) |
.301 |
Yes |
15 (30%) |
24 (28.6%) |
54 (35.3%) |
93 (32.4%) |
32 (31.1%) |
71 (32.3%) |
94 (38.1%) |
197 (34.6%) |
|||
TC |
Mean ± SD |
196.3 ± 52.7 |
180.7 ± 45.7 |
191.1 ± 53.1 |
188.9 ± 51.1 |
.192 |
192.6 ± 54.3 |
184.1 ± 42.6 |
178.7 ± 44.6 |
183.3 ± 45.9 |
.036 |
LDLC |
Mean ± SD |
127.7 ± 39.5 |
111.0 ± 40.0 |
118.3 ± 41.8 |
117.8 ± 41.2 |
.088 |
125.4 ± 47.1 |
118.9 ± 39.1 |
109.5 ± 39.2 |
116.0 ± 41.1 |
.002 |
HDLC |
Mean ± SD |
40.1 ± 13.8 |
39.5 ± 11.2 |
38.5 ± 10.8 |
39.0 ± 11.5 |
.627 |
38.4 ± 10.9 |
38.1 ± 10.9 |
37.4 ± 10.9 |
37.8 ± 10.9 |
.655 |
TG |
Mean ± SD |
112.5 ± 51.1 |
112.3 ± 87.2 |
126.3 ± 76.0 |
119.9 ± 76.2 |
.316 |
138.0 ± 100.2 |
104.3 ± 65.5 |
144.3 ± 114.2 |
127.9 ± 97.3 |
<.001 |
DM |
No |
25 (50%) |
54 (64.3%) |
94 (61.4%) |
173 (60.3%) |
.240 |
71 (68.9%) |
154 (70%) |
155 (62.8%) |
380 (66.7%) |
.219 |
Yes |
25 (50%) |
30 (35.7%) |
59 (38.6%) |
114 (39.7%) |
32 (31.1%) |
66 (30%) |
92 (37.2%) |
190 (33.3%) |
|||
HBP |
No |
19 (38%) |
28 (33.3%) |
36 (23.5%) |
83 (28.9%) |
.084 |
43 (41.7%) |
122 (55.5%) |
108 (43.7%) |
273 (47.9%) |
.016 |
Yes |
31 (62%) |
56 (66.7%) |
117 (76.5%) |
204 (71.1%) |
60 (58.3%) |
98 (44.5%) |
139 (56.3%) |
297 (52.1%) |
|||
smoking |
Ex-smoker |
8 (16%) |
13 (15.5%) |
28 (18.3%) |
49 (17.1%) |
.184 |
34 (33%) |
53 (24.1%) |
68 (27.5%) |
155 (27.2%) |
.002 |
Never |
37 (74%) |
57 (67.9%) |
115 (75.2%) |
209 (72.8%) |
13 (12.6%) |
40 (18.2%) |
70 (28.3%) |
123 (21.6%) |
|||
Smoker |
5 (10%) |
14 (16.7%) |
10 (6.5%) |
29 (10.1%) |
56 (54.4%) |
127 (57.7%) |
109 (44.1%) |
292 (51.2%) |
Missing data analysis
You can use gaze() for missing data analysis. Set the missing argument TRUE.
Dependent:EF |
levels |
Not missing (N=723) |
Missing (N=134) |
p |
---|---|---|---|---|
age |
Mean ± SD |
63.1 ± 11.9 |
64.3 ± 10.6 |
.303 |
sex |
Female |
240 (33.2%) |
47 (35.1%) |
.746 |
Male |
483 (66.8%) |
87 (64.9%) |
||
cardiogenicShock |
No |
686 (94.9%) |
119 (88.8%) |
.012 |
Yes |
37 (5.1%) |
15 (11.2%) |
||
entry |
Femoral |
262 (36.2%) |
50 (37.3%) |
.889 |
Radial |
461 (63.8%) |
84 (62.7%) |
||
Dx |
NSTEMI |
139 (19.2%) |
14 (10.4%) |
<.001 |
STEMI |
272 (37.6%) |
32 (23.9%) |
||
Unstable Angina |
312 (43.2%) |
88 (65.7%) |
||
height |
Mean ± SD |
163.2 ± 9.1 |
163.1 ± 9.3 |
.908 |
weight |
Mean ± SD |
64.7 ± 11.4 |
66.3 ± 10.7 |
.251 |
BMI |
Mean ± SD |
24.2 ± 3.4 |
24.9 ± 3.1 |
.093 |
obesity |
No |
465 (64.3%) |
102 (76.1%) |
.011 |
Yes |
258 (35.7%) |
32 (23.9%) |
||
TC |
Mean ± SD |
186.1 ± 47.5 |
179.9 ± 49.0 |
.183 |
LDLC |
Mean ± SD |
117.5 ± 40.5 |
111.1 ± 44.3 |
.110 |
HDLC |
Mean ± SD |
38.5 ± 11.0 |
36.9 ± 11.6 |
.135 |
TG |
Mean ± SD |
123.7 ± 87.2 |
134.1 ± 108.9 |
.309 |
DM |
No |
462 (63.9%) |
91 (67.9%) |
.428 |
Yes |
261 (36.1%) |
43 (32.1%) |
||
HBP |
No |
303 (41.9%) |
53 (39.6%) |
.680 |
Yes |
420 (58.1%) |
81 (60.4%) |
||
smoking |
Ex-smoker |
172 (23.8%) |
32 (23.9%) |
.033 |
Never |
268 (37.1%) |
64 (47.8%) |
||
Smoker |
283 (39.1%) |
38 (28.4%) |
If there is no missing data, show the table summarizing missing numbers.
gaze(sex~.,data=acs,missing=TRUE) %>% myft()
in column 'sex' There is no missing data
name |
levels |
N |
stats |
n |
---|---|---|---|---|
age |
Mean ± SD |
857 |
63.3 ± 11.7 |
857 |
cardiogenicShock |
No |
857 |
805 (93.9%) |
805 |
Yes |
52 (6.1%) |
52 |
||
entry |
Femoral |
857 |
312 (36.4%) |
312 |
Radial |
545 (63.6%) |
545 |
||
Dx |
NSTEMI |
857 |
153 (17.9%) |
153 |
STEMI |
304 (35.5%) |
304 |
||
Unstable Angina |
400 (46.7%) |
400 |
||
EF |
Mean ± SD |
723 |
55.8 ± 9.6 |
723 |
height |
Mean ± SD |
764 |
163.2 ± 9.1 |
764 |
weight |
Mean ± SD |
766 |
64.8 ± 11.4 |
766 |
BMI |
Mean ± SD |
764 |
24.3 ± 3.3 |
764 |
obesity |
No |
857 |
567 (66.2%) |
567 |
Yes |
290 (33.8%) |
290 |
||
TC |
Mean ± SD |
834 |
185.2 ± 47.8 |
834 |
LDLC |
Mean ± SD |
833 |
116.6 ± 41.1 |
833 |
HDLC |
Mean ± SD |
834 |
38.2 ± 11.1 |
834 |
TG |
Mean ± SD |
842 |
125.2 ± 90.9 |
842 |
DM |
No |
857 |
553 (64.5%) |
553 |
Yes |
304 (35.5%) |
304 |
||
HBP |
No |
857 |
356 (41.5%) |
356 |
Yes |
501 (58.5%) |
501 |
||
smoking |
Ex-smoker |
857 |
204 (23.8%) |
204 |
Never |
332 (38.7%) |
332 |
||
Smoker |
321 (37.5%) |
321 |