Skip to contents

perform automatic regression for a class of coxph

Usage

autoRegCox(
  x,
  threshold = 0.2,
  uni = FALSE,
  multi = TRUE,
  final = FALSE,
  imputed = FALSE,
  keepstats = FALSE,
  ...
)

Arguments

x

An object of class coxph

threshold

numeric

uni

logical whether or not perform univariable regression

multi

logical whether or not perform multivariable regression

final

logical whether or not perform stepwise backward elimination

imputed

logical whether or not perform multiple imputation

keepstats

logical whether or not keep statistic

...

Further arguments to be passed to gaze()

Value

autoRegCox returns an object of class "autoReg" which inherits from the class "data.frame" with at least the following attributes:

attr(*,"yvars)

character. name of dependent variable

attr(*,"model")

name of model. One of "lm","glm" or "coxph"

Examples

require(survival)
require(dplyr)
data(cancer)
fit=coxph(Surv(time,status==2)~log(bili)+age+cluster(edema),data=pbc)
autoReg(fit)
#> ——————————————————————————————————————————————————————————————————————————————————————
#> Dependent: Surv(time, status == 2)                       all        HR (multivariable) 
#> ——————————————————————————————————————————————————————————————————————————————————————
#> log(bili)                             Mean ± SD    0.6 ± 1.0  2.76 (2.59-2.94, p<.001) 
#> age                                   Mean ± SD  50.7 ± 10.4  1.04 (1.03-1.06, p<.001) 
#> ——————————————————————————————————————————————————————————————————————————————————————
#> n=418, events=161, Likelihood ratio test=186.62 on 2 df(p<.001) cluster=edema 
fit=coxph(Surv(time,status)~rx+age+sex+nodes+obstruct+perfor,data=colon)
autoReg(fit)
#> —————————————————————————————————————————————————————————————————————————————————
#> Dependent: Surv(time, status)                       all        HR (multivariable) 
#> —————————————————————————————————————————————————————————————————————————————————
#> rx                                     Obs  624 (34.2%)                           
#>                                        Lev  608 (33.4%)  0.94 (0.81-1.09, p=.409) 
#>                                    Lev+5FU  590 (32.4%)  0.63 (0.54-0.75, p<.001) 
#> age                              Mean ± SD  59.8 ± 11.9  1.00 (1.00-1.01, p=.571) 
#> sex                              Mean ± SD    0.5 ± 0.5  0.92 (0.81-1.05, p=.242) 
#> nodes                            Mean ± SD    3.7 ± 3.6  1.09 (1.08-1.10, p<.001) 
#> obstruct                         Mean ± SD    0.2 ± 0.4  1.26 (1.07-1.48, p=.006) 
#> perfor                           Mean ± SD    0.0 ± 0.2  1.26 (0.88-1.79, p=.210) 
#> —————————————————————————————————————————————————————————————————————————————————
#> n=1822, events=897, Likelihood ratio test=178.71 on 7 df(p<.001) 
autoReg(fit,uni=TRUE,threshold=1)
#> ———————————————————————————————————————————————————————————————————————————————————————————————————————————
#> Dependent: Surv(time, status)                       all          HR (univariable)        HR (multivariable) 
#> ———————————————————————————————————————————————————————————————————————————————————————————————————————————
#> rx                                     Obs  624 (34.2%)                                                     
#>                                        Lev  608 (33.4%)  0.98 (0.84-1.14, p=.786)  0.94 (0.81-1.09, p=.409) 
#>                                    Lev+5FU  590 (32.4%)  0.64 (0.55-0.76, p<.001)  0.63 (0.54-0.75, p<.001) 
#> age                              Mean ± SD  59.8 ± 11.9  1.00 (0.99-1.00, p=.382)  1.00 (1.00-1.01, p=.571) 
#> sex                              Mean ± SD    0.5 ± 0.5  0.97 (0.85-1.10, p=.610)  0.92 (0.81-1.05, p=.242) 
#> nodes                            Mean ± SD    3.7 ± 3.6  1.09 (1.08-1.10, p<.001)  1.09 (1.08-1.10, p<.001) 
#> obstruct                         Mean ± SD    0.2 ± 0.4  1.27 (1.09-1.49, p=.003)  1.26 (1.07-1.48, p=.006) 
#> perfor                           Mean ± SD    0.0 ± 0.2  1.30 (0.92-1.85, p=.142)  1.26 (0.88-1.79, p=.210) 
#> ———————————————————————————————————————————————————————————————————————————————————————————————————————————
#> n=1822, events=897, Likelihood ratio test=178.71 on 7 df(p<.001) 
autoReg(fit,uni=TRUE,final=TRUE) %>% myft()

Dependent: Surv(time, status)

all

HR (univariable)

HR (multivariable)

HR (final)

rx

Obs

624 (34.2%)

Lev

608 (33.4%)

0.98 (0.84-1.14, p=.786)

0.94 (0.80-1.09, p=.388)

0.94 (0.80-1.09, p=.408)

Lev+5FU

590 (32.4%)

0.64 (0.55-0.76, p<.001)

0.64 (0.54-0.75, p<.001)

0.64 (0.54-0.75, p<.001)

age

Mean ± SD

59.8 ± 11.9

1.00 (0.99-1.00, p=.382)

sex

Mean ± SD

0.5 ± 0.5

0.97 (0.85-1.10, p=.610)

nodes

Mean ± SD

3.7 ± 3.6

1.09 (1.08-1.10, p<.001)

1.09 (1.08-1.10, p<.001)

1.09 (1.08-1.10, p<.001)

obstruct

Mean ± SD

0.2 ± 0.4

1.27 (1.09-1.49, p=.003)

1.26 (1.07-1.48, p=.005)

1.27 (1.08-1.49, p=.003)

perfor

Mean ± SD

0.0 ± 0.2

1.30 (0.92-1.85, p=.142)

1.24 (0.87-1.77, p=.237)

n=1822, events=897, Likelihood ratio test=177 on 5 df(p<.001)

data(colon_s,package="finalfit") fit=coxph(Surv(time,status)~age.factor+sex.factor+obstruct.factor+perfor.factor,data=colon_s) autoReg(fit,uni=TRUE,threshold=1) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Dependent: Surv(time, status) all HR (univariable) HR (multivariable) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Age <40 years 69 (7.6%) #> 40-59 years 337 (37.1%) 0.76 (0.53-1.09, p=.132) 0.79 (0.55-1.13, p=.196) #> 60+ years 502 (55.3%) 0.93 (0.66-1.31, p=.668) 0.98 (0.69-1.40, p=.926) #> Sex Female 437 (48.1%) #> Male 471 (51.9%) 1.01 (0.84-1.22, p=.888) 1.02 (0.85-1.23, p=.812) #> Obstruction No 732 (80.6%) #> Yes 176 (19.4%) 1.29 (1.03-1.62, p=.028) 1.30 (1.03-1.64, p=.026) #> Perforation No 881 (97.0%) #> Yes 27 (3.0%) 1.17 (0.70-1.95, p=.556) 1.08 (0.64-1.81, p=.785) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> n=908, events=441, Likelihood ratio test=9.86 on 5 df(p=.079) autoReg(fit,uni=TRUE,imputed=TRUE) #> ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Dependent: Surv(time, status) all HR (univariable) HR (multivariable) HR (imputed) #> ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Age <40 years 69 (7.6%) #> 40-59 years 337 (37.1%) 0.76 (0.53-1.09, p=.132) 0.79 (0.55-1.14, p=.203) 0.77 (0.54-1.11, p=.163) #> 60+ years 502 (55.3%) 0.93 (0.66-1.31, p=.668) 0.99 (0.70-1.40, p=.943) 0.96 (0.68-1.36, p=.818) #> Sex Female 437 (48.1%) #> Male 471 (51.9%) 1.01 (0.84-1.22, p=.888) #> Obstruction No 732 (80.6%) #> Yes 176 (19.4%) 1.29 (1.03-1.62, p=.028) 1.31 (1.04-1.64, p=.022) 1.31 (1.04-1.64, p=.021) #> Perforation No 881 (97.0%) #> Yes 27 (3.0%) 1.17 (0.70-1.95, p=.556) #> ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> n=908, events=441, Likelihood ratio test=9.73 on 3 df(p=.021)