Skip to contents

Make a multiple imputed model

Usage

imputedReg(fit, data = NULL, m = 20, seed = 1234, digits = 2, mode = 1, ...)

Arguments

fit

An object of class lm, glm, coxph or survreg

data

a data.frame

m

Number of multiple imputations. The default is m=20.

seed

An integer that is used as argument by the set.seed() for offsetting the random number generator.

digits

Integer indicating the number of decimal place

mode

integer indicating summary mode of class survreg

...

Further argument to be passed to mice

Value

An object of class "imputedReg" which inherits from the class "data.frame"

Examples

data(cancer,package="survival")
fit=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
imputedReg(fit)
#> Warning: Number of logged events: 1
#>            id     estimate   std.error  statistic       df      p.value
#> 1 (Intercept) -0.638897928 0.281963378 -2.2658898 1833.346 2.357429e-02
#> 2       rxLev -0.046738499 0.118157562 -0.3955608 1848.303 6.924747e-01
#> 3   rxLev+5FU -0.618091905 0.120613104 -5.1245833 1845.110 3.294030e-07
#> 4         sex -0.033089561 0.098174322 -0.3370490 1846.866 7.361182e-01
#> 5         age  0.001938722 0.004171101  0.4647986 1841.764 6.421306e-01
#> 6    obstruct  0.304585914 0.123567787  2.4649297 1845.777 1.379447e-02
#> 7       nodes  0.190713187 0.018143728 10.5112457 1575.211 5.050332e-25
#>          2.5 %      97.5 %        OR     lower     upper
#> 1 -1.191901079 -0.08589478 0.5278739 0.3036435 0.9176908
#> 2 -0.278474816  0.18499782 0.9543369 0.7569373 1.2032158
#> 3 -0.854644419 -0.38153939 0.5389719 0.4254344 0.6828095
#> 4 -0.225633881  0.15945476 0.9674519 0.7980102 1.1728712
#> 5 -0.006241862  0.01011931 1.0019406 0.9937776 1.0101707
#> 6  0.062238584  0.54693324 1.3560634 1.0642162 1.7279457
#> 7  0.155124788  0.22630159 1.2101123 1.1678037 1.2539538
#>                      stats
#> 1 0.53 (0.30-0.92, p=.024)
#> 2 0.95 (0.76-1.20, p=.692)
#> 3 0.54 (0.43-0.68, p<.001)
#> 4 0.97 (0.80-1.17, p=.736)
#> 5 1.00 (0.99-1.01, p=.642)
#> 6 1.36 (1.06-1.73, p=.014)
#> 7 1.21 (1.17-1.25, p<.001)
# \donttest{
library(survival)
fit=coxph(Surv(time,status)~rx+age+sex+nodes+obstruct+perfor,data=colon)
imputedReg(fit)
#>          id     estimate   std.error  statistic       df      p.value
#> 1     rxLev -0.046507478 0.077155431 -0.6027765 909.7921 5.468076e-01
#> 2 rxLev+5FU -0.438763591 0.084184633 -5.2119202 909.3767 2.313569e-07
#> 3       age  0.001417281 0.002781573  0.5095252 909.2875 6.105078e-01
#> 4       sex -0.068785665 0.066475870 -1.0347464 909.8595 3.010623e-01
#> 5     nodes  0.087202231 0.006279040 13.8878295 883.8862 8.235433e-40
#> 6  obstruct  0.241574969 0.081489439  2.9644942 910.5266 3.110847e-03
#> 7    perfor  0.210557594 0.181821453  1.1580459 910.9150 2.471488e-01
#>          2.5 %      97.5 %        HR     lower     upper
#> 1 -0.197930789  0.10491583 0.9545574 0.8204266 1.1106171
#> 2 -0.603982339 -0.27354484 0.6448332 0.5466304 0.7606782
#> 3 -0.004041767  0.00687633 1.0014183 0.9959664 1.0069000
#> 4 -0.199249525  0.06167820 0.9335267 0.8193454 1.0636200
#> 5  0.074878665  0.09952580 1.0911173 1.0777534 1.1046470
#> 6  0.081646014  0.40150392 1.2732529 1.0850716 1.4940700
#> 7 -0.146280037  0.56739523 1.2343661 0.8639157 1.7636671
#>                      stats
#> 1 0.95 (0.82-1.11, p=.547)
#> 2 0.64 (0.55-0.76, p<.001)
#> 3 1.00 (1.00-1.01, p=.611)
#> 4 0.93 (0.82-1.06, p=.301)
#> 5 1.09 (1.08-1.10, p<.001)
#> 6 1.27 (1.09-1.49, p=.003)
#> 7 1.23 (0.86-1.76, p=.247)
fit=survreg(Surv(time,status)~rx+age+sex+nodes+obstruct+perfor,data=colon)
imputedReg(fit)
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#>            id    estimate   std.error   statistic       df       p.value
#> 1 (Intercept)  8.50461911 0.222671708  38.1935325 1841.598 1.408113e-235
#> 2       rxLev  0.06988118 0.091912834   0.7602984 1843.989  4.471735e-01
#> 3   rxLev+5FU  0.55888983 0.100834060   5.5426691 1843.323  3.408684e-08
#> 4         age -0.00209593 0.003326308  -0.6301070 1842.304  5.287027e-01
#> 5         sex  0.07209732 0.079204503   0.9102680 1844.358  3.628001e-01
#> 6       nodes -0.11186792 0.007733528 -14.4653137 1771.476  6.546275e-45
#> 7    obstruct -0.28273306 0.097359527  -2.9040102 1845.818  3.727954e-03
#> 8      perfor -0.27592907 0.216732569  -1.2731315 1846.817  2.031316e-01
#> 9  Log(scale)  0.17496747 0.029384771   5.9543586 1845.528  3.118156e-09
#>          2.5 %      97.5 %          ETR        lower        upper
#> 1  8.067903559  8.94133466 4937.5232060 3190.4063153 7641.3889017
#> 2 -0.110382988  0.25014535    1.0723808    0.8954911    1.2842121
#> 3  0.361128851  0.75665081    1.7487300    1.4349483    2.1311267
#> 4 -0.008619661  0.00442780    0.9979063    0.9914174    1.0044376
#> 5 -0.083242592  0.22743724    1.0747599    0.9201279    1.2553786
#> 6 -0.127035716 -0.09670012    0.8941624    0.8807022    0.9078282
#> 7 -0.473679431 -0.09178668    0.7537210    0.6227068    0.9122997
#> 8 -0.700995671  0.14913754    0.7588668    0.4960911    1.1608326
#> 9  0.117336576  0.23259836    1.1912075    1.1244978    1.2618746
#>                               stats
#> 1 4937.52 (3190.41-7641.39, p<.001)
#> 2          1.07 (0.90-1.28, p=.447)
#> 3          1.75 (1.43-2.13, p<.001)
#> 4          1.00 (0.99-1.00, p=.529)
#> 5          1.07 (0.92-1.26, p=.363)
#> 6          0.89 (0.88-0.91, p<.001)
#> 7          0.75 (0.62-0.91, p=.004)
#> 8          0.76 (0.50-1.16, p=.203)
#> 9          1.19 (1.12-1.26, p<.001)
imputedReg(fit,mode=2)
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#> Warning: The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
#>            id    estimate   std.error   statistic       df       p.value
#> 1 (Intercept)  8.50461911 0.222671708  38.1935325 1841.598 1.408113e-235
#> 2       rxLev  0.06988118 0.091912834   0.7602984 1843.989  4.471735e-01
#> 3   rxLev+5FU  0.55888983 0.100834060   5.5426691 1843.323  3.408684e-08
#> 4         age -0.00209593 0.003326308  -0.6301070 1842.304  5.287027e-01
#> 5         sex  0.07209732 0.079204503   0.9102680 1844.358  3.628001e-01
#> 6       nodes -0.11186792 0.007733528 -14.4653137 1771.476  6.546275e-45
#> 7    obstruct -0.28273306 0.097359527  -2.9040102 1845.818  3.727954e-03
#> 8      perfor -0.27592907 0.216732569  -1.2731315 1846.817  2.031316e-01
#> 9  Log(scale)  0.17496747 0.029384771   5.9543586 1845.528  3.118156e-09
#>          2.5 %      97.5 %           HR       lower        upper
#> 1  8.067903559  8.94133466 0.0007737485 0.001117819 0.0005355848
#> 2 -0.110382988  0.25014535 0.9428315172 1.097446670 0.8099995149
#> 3  0.361128851  0.75665081 0.6244981035 0.737703146 0.5286650646
#> 4 -0.008619661  0.00442780 1.0017671644 1.007287600 0.9962769831
#> 5 -0.083242592  0.22743724 0.9410730124 1.072640419 0.8256433367
#> 6 -0.127035716 -0.09670012 1.0988203229 1.112950366 1.0848696748
#> 7 -0.473679431 -0.09178668 1.2689292220 1.490372401 1.0803886129
#> 8 -0.700995671  0.14913754 1.2616769555 1.804920394 0.8819384752
#> 9  0.117336576  0.23259836 0.8629556087 0.905884058 0.8220614725
#>                      stats
#> 1 0.00 (0.00-0.00, p<.001)
#> 2 0.94 (1.10-0.81, p=.447)
#> 3 0.62 (0.74-0.53, p<.001)
#> 4 1.00 (1.01-1.00, p=.529)
#> 5 0.94 (1.07-0.83, p=.363)
#> 6 1.10 (1.11-1.08, p<.001)
#> 7 1.27 (1.49-1.08, p=.004)
#> 8 1.26 (1.80-0.88, p=.203)
#> 9 0.86 (0.91-0.82, p<.001)
# }